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ABSTRACT

We prove the Lp boundedness of the maximal operator associated with

a family of lines lx = {(x1, x2) − t(1, a(x1)) : t ∈ [0,∞)} when a′ is a

positive increasing function.

1. Introduction

Let v : R2 → R2 be a vector field. We define a maximal function along a family

of lines {x− tv(x) : t ∈ R} by

(1.1) Mf(x) = sup
r>0

1

r

∫ r

0

|f(x− tv(x))|dt,

where x = (x1, x2). We assume that our vector field v depends on only one

variable x1 given by

v(x1, x2) = (1, a(x1)),
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where a is a real valued function defined on [x0,∞). Consider the maximal

operator

(1.2) Maf(x) = χ[x0,∞)(x1) sup
r>0

1

r

∫ r

0

|f(x1 − t, x2 − a(x1)t)|dt.

In [2], Carbery, Seeger, Wainger and Wright study the maximal operator Ma

and the corresponding Hilbert transform. They obtain the Lp boundedness of

those operators under the convexity assumption of a and the additional size

conditions of a and a′ such that

(1.3) 0 < c ≤

∣∣∣∣
a′(t)|Il|

a(t)

∣∣∣∣≤ C for t ∈ Il = {u : 2l ≤ a′(u) ≤ 2l+1},

where C and c are constants independent of l. In this paper we prove the

Lp-boundedness of the maximal operator Ma without the assumption of (1.3).

Theorem 1: Suppose that a′ : [t0,∞) → [0,∞) is a monotonic increasing

function such that a′(t0) = 0. Then Ma is bounded on Lp(R2) for 1 < p ≤ ∞.

Remark:

(1) Let v in (1.1) be a Lipschitz vector field from R2 into the unit circle S1.

By A. Zygmund, it is conjectured that the average of the L2-function

along the line segment {x − tv(x) : t ∈ (−r, r)} converges to itself for

almost every x as r approaches to zero. It is still an open problem and

seems to be unknown even if the Lipschitz condition is replaced by the

smoothness condition on v as proposed in [6].

(2) If v is real analytic or satisfies a certain finite type condition, then the

local version of M is bounded in Lp with p > 1, see [1] and [3].

(3) In [4], N. Katz has made an interesting weak type (2,2) bound of M

when v is appropriately restricted to a finite number of points in S1.

(4) As a singular integral version of the Zygmund conjecture, E. M. Stein

conjectured that the Hilbert transform Hv along the line

{x− tv(x) : −ε ≤ t ≤ ε}

is of weak type (2.2) under the Lipschitz condition of v. M. Lacey and

X. Li [5] introduced a new object called a Lipschitz Kakeya maximal

function. They proved that Steins conjecture is resolved if the Lips-

chitz Kakeya maximal function is shown to be bounded in Lp for some
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1 < p < 2. They obtained the weak type (2.2) estimate for the Lipschitz

Kakeya maximal function.

2. Sketch of Proof

Let t1 = sup{t : a′(t) = 0}. Then, for x1 ∈ [t0, t1], Maf(x) is controlled by

the one dimensional Hardy-Littlewood maximal function. Thus we may assume

that a′(x1) > 0. Let ϕj(y) = ϕ(y/2j)/2j with ϕ ∈ C∞
0 (1/2, 1). By the diadic

decomposition of the interval [0, r], we define a diadic version of Ma by

Maf(x) = sup
j∈Z

|Mjf(x)|,

where

Mjf(x) =

∫
f(x1 − t, x2 − a(x1)t)ϕj(t)dt.

Then it suffices to prove the Lp(R2) boundedness of Ma in proving Theorem 1.

By using

δ(x2 − y2 − a(x1)(x1 − y1)) =

∫
eiλ[x2−y2−a(x1)(x1−y1)]dλ,

we rewrite

Mjf(x) =

∫∫∫
eiλ[x2−y2−a(x1)(x1−y1)]ϕj(x1 − y1)f(y1, y2)dy1dy2dλ.

Let us choose an even function ψ ∈ C∞
0 (−1, 1) such that ψ ≡ 1 on [−1/2, 1/2].

Let χ(ξ) = ψ(ξ/2) − ψ(ξ). Then for each fixed j and λ 6= 0,

1 =

∞∑

n=−∞

χ(λa′(x1)2
2j+n) = ψ(λa′(x1)2

2j) +

n=0∑

n=−∞

χ(λa′(x1)2
2j+n).

According to the size |λa′(x1)2
2j |, we decompose

Mjf(x) = M loc
j f(x) +

n=0∑

n=−∞

Mn
j f(x)

where

M loc
j f(x) =

∫∫∫
eiλ[x2−y2−a(x1)(x1−y1)]ϕj(x1 − y1)ψ(λa′(x1)2

2j)f(y)dydλ,

Mn
j f(x) =

∫∫∫
eiλ[x2−y2−a(x1)(x1−y1)]ϕj(x1 − y1)χ(λa′(x1)2

2j+n)f(y)dydλ.



4 JOONIL KIM Isr. J. Math.

Thus our maximal function Maf is majorized by M
locf + M

glof where

M
locf(x) = sup

j∈Z

|M loc
j f(x)|,(2.1)

M
glof(x) =

n=0∑

n=−∞

sup
j∈Z

|Mn
j f(x)|.(2.2)

For the local part estimate M
loc, we give a weak type (1,1) estimate by

making an appropriate Vitali-type covering lemma for a family of variable paral-

lelograms. For this, we need only the condition that a′ is increasing function.

This will be established in Section 3.

For the global part M
glo, we obtain the L2 bound by estimating

‖Mn
j [Mn

j ]∗‖L2→L2 = O(2−c|n|), ‖Mn
j1 [M

n
j2 ]

∗‖L2→L2 = O(2−c|j1−j2|),

for some c > 0. To derive the Lp theory, we use the bootstrap argument

combined with the Littlewood-Paley decomposition on the second coordinate

of the frequency variable. This will be done in Section 4.

In [2], the authors handled each piece Mj by comparing the sizes of 2j and

|Il|, where Il = {u : 2l ≤ a′(u) ≤ 2l+1}. The case 2j < |Il| was reduced to the

case having nonvanishing rotational curvature by localization argument. The

comparability condition (1.3) was used to make the uniform lower bound of the

rotational curvature. For the case 2j > |Il|, the condition (1.3) is used to control

the size of the curvature |λa′(x1)2
2j | in the almost orthogonality estimates.

However we note that our main estimate is independent of the size |Il|.

3. Weak type (1,1) estimates for M
loc

For each x ∈ R2 and j ∈ Z, we set

Hx(j) = {y : 2j−1 < x1 − y1 < 2j , |x2 − y2 − a(x1)(x1 − y1)| < 22ja′(x1)}.

Define the maximal operator associated with the class of the above parallelo-

grams by

(3.1) Nf(x) = sup
j∈Z

1

|Hx(j)|

∫

Hx(j)

|f(y)|dy.

Let us rewrite M loc
j f(x) as

(3.2)

∫∫
ϕj(x1 − y1)

1

22ja′(x1)
ψ̂

(
x2 − y2 − a(x1)(x1 − y1)

22ja′(x1)

)
f(y1, y2)dy.
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Since ψ̂ in (3.2) is a rapidly decreasing function, we observe that

M
locf(x) ≤ CNf(x).

Thus the weak type (1,1)-boundedness of M
loc will be proved by the following

estimates:

Proposition 1: Suppose that a′ is a positive increasing function, then N is

weak type (1, 1).

For the proof, we make a variant of Vitali-covering lemma corresponding to

the parallelogram Hx(j)’s. Let us define two sets Bx(j) and B∗
x(j) associated

with Hx(j) such that

Bx(j) = {y : |x1 − y1| < 2j, |x2 − y2 − a(x1)(x1 − y1)| < 22ja′(x1)},

B∗
x(j) = {y : |x1 − y1| < 2j+3, |x2 − y2 − a(x1)(x1 − y1)| < 22(j+5))a′(x1)}.

Then note that Hx(j) ⊂ Bx(j) ⊂ B∗
x(j) and the size of each set is comparable

with the others

|Hx(j)| = a′(x1)2
3j,

|Bx(j)| = a′(x1)2
3j+2,(3.3)

|B∗
x(j)| = a′(x1)2

3(j+5).

With the above size information we need an engulfing property which is crucial

in the Vitali-type covering lemma.

Lemma 1: Let j be an integer valued function on R2 and a′ be a positive

increasing function. If |Hz(j(z))| ≤ |Hx(j(x))| and Hz(j(z)) ∩Hx(j(x)) 6= ∅,

then Bz(j(z)) ⊂ B∗
x(j(x)).

Proof. Suppose that x1 ≤ z1. Then a′(x1) ≤ a′(z1), since a′ is an increasing

function. Thus we obtain that j(z) ≤ j(x), in view of the inequality

23j(z)a′(z1) = |Hz(j(z))| ≤ |Hx(j(x))| = 23j(x)a′(x1).

Since there exists y ∈ Hz(j(z)) ∩Hx(j(x)),

2j(z) > z1 − y1 = (z1 − x1) + (x1 − y1) > 0 + 2j(x)−1.

Thus it follows that j(z) = j(x). From this and |Hz(j(z))| ≤ |Hx(j(x))|, it also

follows that a′(z1) ≤ a′(x1). So we have

(3.4) a′(z1) = a′(x1) and j(z) = j(x) if x1 ≤ z1.
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Suppose that z1 ≤ x1. For y ∈ Hz(j(z)) ∩Hx(j(x)), we observe that

2j(x) > x1 − y1 = (x1 − z1) + (z1 − y1) ≥ z1 − y1 > 2j(z)−1.

Therefore,

(3.5) a′(z1) ≤ a′(x1) and j(z) ≤ j(x) if z1 ≤ x1.

Now we show that Bz(j(z)) ⊂ B∗
x(j(x)). Let us take w ∈ Bz(j(z)). By the

hypothesis, there exists y ∈ Hz(j(z)) ∩Hx(j(x)). Thus we use the definition of

Bz(j) and Hz(j) to obtain that

(3.6)

−2j(z) < z1 − w1 < 2j(z) and |S(z, w)| < 22j(z)a′(z1),

2j(z)−1 < z1 − y1 < 2j(z) and |S(z, y)| < 22j(z)a′(z1),

2j(x)−1 < x1 − y1 < 2j(x) and |S(x, y)| < 22j(x)a′(x1),

where S(u, v) = u2 − v2 − a(u1)(u1 − v1) for u, v ∈ R2. From (3.4)–(3.6),

(3.7) |x1 − w1| ≤ |x1 − y1| + |y1 − z1| + |z1 − w1| < 2j(x)+3.

From (3.4)–(3.6),

(3.8)

|S(x,w)| = |S(z, w) − S(z, y) + S(x, y) + (a(x1) − a(z1))(y1 − w1)|

< a′(x1)2
2(j(x)+3) +

∣∣∣∣
∫ x1

z1

a′(t)dt(y1 − w1)

∣∣∣∣

< a′(x1)2
2(j(x)+4).

Therefore from (3.7) and (3.8), w ∈ B∗
x(j(x)).

By using Lemma 1 we can prove a variant of the Vitali-covering lemma:

Lemma 2: Suppose that the hypothesis of the previous lemma is true. Let

{Bxα
(j(xα))}N

α=1 be a class of N parallelograms. Then there exists a subse-

quence {xαk
}M

k=1 of {xα}N
α=1 satisfying

α=N⋃

α=1

Bxα
(j(xα)) ⊂

ν=M⋃

k=1

B∗
xαk

(j(xαk
)),(3.9)

Hxαk
(j(xαk

)) ∩Hxαl
(j(xαl

)) = ∅ if k 6= l.(3.10)

Proof. ChooseBxα1
(j(xα1 )) from B1 = {Bxα

(j(xα))}N
α=1 so that |Hxα1

(j(xα1))|

is one of the largest among H1 = {Hxα
(j(xα))}N

α=1. For m ≥ 2, we select

Bxαm
(j(xαm

)) from the class

Bm = Bm−1 − {Bxα
(j(xα)) : Hxα

(j(xα)) ∩Hxαm−1
(j(xαm−1)) 6= ∅}
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so that |Hxαm
(j(xαm

))| is one of the largest among the class

Hm = Hm−1 − {Hxα
(j(xα)) : Hxα

(j(xα)) ∩Hxαm−1
(j(xαm−1 )) 6= ∅}.

Our selection is done in M (which is less then equal to N) steps. Take any

Bxα
(j(xα)) with 1 ≤ α ≤ N . Then Hxα

(j(xα)) meets some Hxαm
(j(xαm

)) and

|Hxα
(j(xα))| ≤ |Hxαm

(j(xαm
))|, otherwise it would be a candidate of M + 1-th

step. By Lemma 1 or Lemma 2, Bxα
(j(xα)) ⊂ B∗

xαm
(j(xαm

)). This proves

(3.9). In each step we have chosen Hxαm
(j(xαm

)) satisfying (3.10).

Proof of Proposition 1. Let D be a compact set contained in {x : Nf(x) > λ}.

We show that

|D| ≤
C

λ
‖f‖L1(R2).

By (3.1), for each x ∈ D there exist j(x) ∈ Z such that

λ <
1

|Hx(j(x))|

∫

Hx(j(x))

|f(y)|dy.(3.11)

Note that D ⊂
⋃

x∈D Bx(j(x)) where j(x) satisfying (3.11). From this and

compactness of the set D, there exist x1, . . . , xN ∈ D for some N such that

D ⊂
α=N⋃

α=1

Bxα
(j(xα)).(3.12)

So from (3.3),(3.11),(3.12) and Lemma 3, we have

|D| ≤

∣∣∣∣
α=N⋃

α=1

Bxα
(j(xα))

∣∣∣∣ ≤
ν=M∑

k=1

|B∗
xαk

(j(xαk
))| ≤ 215

ν=M∑

k=1

|Hxαk
(j(xαk

))|

≤
215

λ

ν=M∑

k=1

∫

Hxαk
(j(xαk

))

|f(y)|dy ≤
215

λ
‖f‖L1(R2).

The first inequality follows from (3.12), the second inequality from (3.9), the

third from (3.3), the fourth from (3.11) and the last from (3.10).

Remark: The proof of Lemma 1 is based on the increasing property of a′ com-

bined with the geometry of Hx(j) ⊂ {y : 2j > x1 − y1 > 2j−1}. If we define

a parallelogram as H ′
x(j) ⊂ {y : 2j > y1 − x1 > 2j−1}, we are not able to

use properties such as (3.4) and (3.5), which are crucial factor for the proof of

our Vitali-type covering lemma. For this reason, the case including the interval

[−r, 0] in (1.2) is not directly covered by Theorem 1. It will be interesting to
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extend our result to the maximal function defined on the full interval [−r, r]

in (1.2).

4. Lp estimate for M
glo

In proving the Lp boundedness of M
glo, we show that there exists a constant

C > 0 independent of n such that for n ≤ 0:
∥∥∥∥
( ∑

j∈Z

|Mn
j f |

2

)1/2∥∥∥∥
L2(R2)

≤ C2−|n|/8‖f‖L2(R2)(4.1)

∥∥∥ sup
j∈Z

|Mn
j f |

∥∥∥
Lp(R2)

≤ C‖f‖Lp(R2) for 1 < p ≤ 2.(4.2)

4.1. Proof of (4.1). Fix λ ∈ R1 and n ≤ 0, j ∈ Z. We define an operator

T λ
j,n on L2(R1) by

T λ
j,nf(x) =

∫
e−iλa(x)(x−y)χ(λa′(x)22j+n)ϕj(x − y)f(y)dy,

where x, y ∈ R. Then by dy2 integration in the definition of Mn
j f(x1, x2), we

can observe that

Mn
j f(x1, x2) = [T λ

j,nf̂λ

2
(x1)]

∨(x2).

where ∨ is the inverse Fourier transform with respect to λ variable, and

f̂λ

2
(x1) =

∫
e−iλx2f(x1, x2)dx2.

So by applying the Plancherel theorem on the second variable we have

∑

j

‖Mn
j f‖

2
L2(R2) =

∑

j

∫
‖T λ

j,nf̂λ

2
‖2

L2(R1)dλ.

Thus by repetition of the Plancherel Theorem on the second variable, it suffices

to show that for each fixed λ
∥∥∥∥
( ∑

j∈Z

|T λ
j,nf |

2

)1/2∥∥∥∥
L2(R1)

≤ C2−|n|/8‖f‖L2(R1).

By using the Cotlar-Stein Lemma combined with the duality, we have only to

check the following two estimates:

‖T λ
j,n[T λ

j,n]∗‖L2(R1)→L2(R1) ≤ C2−|n|/2,(4.3)

‖T λ
j1,n[T λ

j2,n]∗‖L2(R1)→L2(R1) ≤ C2−|j1−j2|/4(4.4)
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where C > 0 is independent of λ. We write

T λ
j1,n[T λ

j2,n]∗f(x) =

∫
Kj1,j2(x, z)f(z)dz,

where Kj1,j2(x, z) is

(4.5)

∫
eiΨ(x,z,y,λ)χ(λa′(x)22j1+n)χ(λa′(z)22j2+n)ϕj1(x− y)ϕj2(z − y)dy,

where

Ψ(x, z, y, λ) = λ(a(x)(x − y) − a(z)(z − y)).

Note that we shall use x, y and z as real numbers in the proof of (4.3) and (4.4).

Proof of (4.3). Let us now split our kernel Kj,j(x, z) = K1(x, z) +K2(x, z) so

that

K1(x, z) = χA(x, z)Kj,j(x, z)

K2(x, z) = χAc(x, z)Kj,j(x, z)

where χA is a characteristic function supported on the set

A =
{
(x, z) : |x− z| ≤ 2−|n|/22j

}
.

On the support of Ac = R2 − A, the derivative of the phase function Ψ with

respect to y is bounded below such that

(4.6) |λ(a(x) − a(z))| =

∣∣∣∣λ
∫ x

z

a′(u)du

∣∣∣∣ ≥ 2|n|/22−j.

Thus the integration by parts yields that
∫

|K2(x, z)|dx ≤ C2−|n|/2,

∫
|K2(x, z)|dz ≤ C2−|n|/2.

By measuring the support of A we obtain that
∫

|K1(x, z)|dx ≤ C2−|n|/2,

∫
|K1(x, z)|dz ≤ C2−|n|/2.

Hence the above four estimates prove (4.3).

Proof of (4.4). Assume without loss of generality j1 ≫ j2. Let us define a set

B:

B =
{
(x, z) : |a(x) − a(z)| ≤ a′(x)2j12

3
2 (j1−j2)

}
.
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Let us now split our kernel Kj1,j2(x, z) = L1(x, z) + L2(x, z) so that

L1(x, z) = χB(x, z)Kj1,j2(x, z)

L2(x, z) = χBc(x, z)Kj1,j2(x, z).

On the support of Bc, the derivative of our phase function Ψ with respect to y

is

|λ(a(x) − a(z))| > |λa′(x)2j12
3
2 (j1−j2)| ≥ |2−j2λa′(x)22j12

j1−j2
2 |,

which is bigger then 2−j22|n|2
j1−j2

2 . So the integration by parts yields that
∫

|L2(x, z)|dx ≤ C2
−|j1−j2|

2 ,

∫
|L2(x, z)|dz ≤ C2

−|j1−j2|
2 .(4.7)

From the fact that |λa′(x)22j1+n| ≈ |λa′(z)22j2+n| ≈ 1, we have a′(z) ≈

a′(x)22(j1−j2). Therefore, for each fixed x, we measure the support of z so

that

|{z : (x, z) ∈ B}| ≤ C
a′(x)2j12

3
2 (j1−j2)

a′(x)22(j1−j2)
= 2j12−

(j1−j2)
2 .

Using this we can estimate
∫

|L1(x, z)|dx ≤ C,

∫
|L1(x, z)|dz ≤ C2

−|j1−j2|
2 .(4.8)

Hence (4.4) follows from (4.7) and (4.8).

4.2. Proof of (4.2). Let Ik = {t : 2k−1 < a′(t) ≤ 2k} and define

Pkf(x1, x2) = χIk
(x1)f(x1, x2)

where χIk
is the characteristic function supported on the set Ik. Then

(4.9) Mn
j f(x) =

∞∑

k=−∞

χIk−2j
(x1)Pk−2jM

n
j f(x)

where Pk−2jM
n
j f(x) is

χIk−2j
(x1)

∫∫∫
ϕj(x1 − y1)e

iλ[x2−y2−a(x1)(x1−y1)]χ(22j+na′(x1)λ)dλf(y)dy.

On the support of the kernel,

2k−1 < a′(x1)2
2j ≤ 2k and 2−n−1 < λa′(x1)2

2j ≤ 2−n.
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So 2−n−k−1 < λ < 2−n−k+1. This implies that

(4.10) Pk−2jM
n
j f(x) = Pk−2jM

n
j L

2
n+kf(x),

where

L̂2
n+kf(ξ1, ξ2) =

(
χ(2n+k−1ξ2) + χ(2n+kξ2) + χ(2n+k+1ξ2)

)
f̂(ξ1, ξ2).

Thus from (4.9) and (4.10) combined with the fact
∑

k |χIk−2j
(x1)|2 ≤ 2,

(4.11) sup
j∈Z

|Mn
j f(x)| ≤

( ∑

k∈Z

∣∣∣ sup
j
Pk−2jM

n
j (L2

n+kf)(x)
∣∣∣
2
)1/2

.

By using 22ja′(x1) ≈ 2k we can see that Pk−2jM
n
j f(x) is majorized by

χIk−2j
(x1)

∫∫
ϕj(x1 − y1)

1

2k+n
ψ̂

(x2 − y2 − a(x1)(x1 − y1)

2k+n

)
f(y1, y2)dy.

For each fixed k and n, we define the maximal function

Nn,kf(x) = sup
j
Nn,k

j f(x)

where

Nn,k
j f(x) =

χIk−2j
(x1)

|Rx(j)|

∫∫

Rx(j)

|f(y1, y2)|dy

and

Rx(j) = {y : 2j−1 < x1 − y1 ≤ 2j , |x2 − y2 − a(x1)(x1 − y1)| < 2k+n}.

Observe from the fact that ψ̂ is rapidly decreasing function,

sup
k

|Pk−2jM
n
j f(x)| ≤ CNn,kf(x).

Thus by the Littlewood-Paley inequality for the square sum of L2
n+kf in (4.11),

we see that it suffices to show that there exist C independent of n such that for

1 < p ≤ 2:

(4.12)

∥∥∥∥
( ∑

k∈Z

|Nn,k(|fk|)|
2

)1/2∥∥∥∥
Lp(R2)

≤ C

∥∥∥∥
( ∑

k∈Z

|fk|
2

)1/2∥∥∥∥
Lp(R2)

.

We shall show that for 1 < p < ∞, there is a constant C independent of n, k

such that,

(4.13) ‖Nn,kf‖Lp(R2) ≤ C‖f‖Lp(R2).
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Now we show that (4.13) implies (4.12). If we have (4.13), then (4.12) follows

for p = 2. This and the positivity of the kernel of the operator Nn,k
j imply that

‖{Nn,kfk}‖L2(l∞) ≤ C‖{fk}‖L2(l∞).

From (4.13) we have

‖{Nn,kfk}‖Lp(lp) ≤ C‖{fk}‖Lp(lp)

for any p > 1. By interpolation of above two vector valued norm space, we

have (4.12) for 4/3 < p ≤ 2. Repeat this process until we obtain (4.12) for any

1 < p ≤ 2.

Now let us return to (4.13). We have from the support condition for each

fixed n, k,

(4.14) Nn,k
j f(x) ≤ Nn,k

j fRj
(x)

where fRj
(y) = χRj

(y)f(y) and Rj =
⋃

x1∈I2k−j
Rx(j). From (4.14),

(4.15)

‖Nn,kf‖p
Lp(R2) ≤

∫∫ ∑

j∈Z

|Nn,k
j fRj

(x)|pdx1dx2 ≤
∑

j∈Z

∫∫
|fRj

(x)|pdx1dx2.

By (4.15), we see that (4.13) is proved if we show that

(4.16) Rj1 ∩Rj2 = ∅ if |j1 − j2| > 10.

Proof of (4.16). Without loss of generality, j1 > j2 +10. It suffices to show that

for 2k−2j1−1 < a′(x1) ≤ 2k−2j1 and 2k−2j2−1 < a′(z1) ≤ 2k−2j2 :

Rx(j1) ∩Rz(j2) = ∅.

Since a′ is increasing, it follows that x1 ≤ z1. Assume that y ∈ Rx(j1)∩Rz(j2),

then

2j1−1 < x1 − y1 ≤ 2j1 and 2j2−1 < z1 − y1 ≤ 2j2 .

This means that y1 is on the left to x1 with distance 2j1 and y1 is on the left

to z1 with distance 2j2 . This is a contradiction with the fact that x1 ≤ z1 and

2j1 > 2102j2 . Hence (4.16) is proved.
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